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Abstract. Mixed-metal chain complexes constructed from lantern-type dinuclear ruthenium(II,III) 
carboxylate unit and tetracyanidonickelate(II), (PPh4)n[Ru2(O2CCH3)4Ni(CN)4]n·nH2O (1) and 
(PPh4)n[Ru2{O2CC(CH3)3}4]3n[Ni(CN)4]2n·2nH2O (2), were synthesized and characterized by elemental analysis, IR, 
and UV-vis spectroscopies. These data are in accordance with the formation of the chain complex with an alternative 
arrangement of the dinuclear Ru2 unit and tetracyanidonickelate(II). A broad band at near-IR and a band at visible 
region (1058 and 452 nm for 1 and 1082 and 454 nm for 2) were observed in the diffused refl ectance spectra and 
ascribed to a δ(Ru2)→δ*(Ru2) and a π(RuO, Ru2)→π*(Ru2) transitions, respectively. Temperature-dependence of 
magnetic susceptibility (4.5—300 K) showed that the antiferromagnetic interaction between the dinuclear units is 
weak (zJ = −0.2 cm−1) with D value of 75 cm−1 for both complexes.

Keywords: dinuclear ruthenium(II,III) carboxylate, magnetic property, mixed-metal complex, tetracyanido 
nickelate(II).

Introduction
The chemistry of dinuclear metal carboxylates has attracted much attention over the past fi ve decades because 

of the unique lantern-type (or paddlewheel-type) dinuclear core [1-5]. Among the dinuclear metal carboxyletes, mixed-
valent ruthenium(II,III) carboxylates [Ru2(O2CR)4]

+ are interesting, because these dinuclear systems are paramagnetic 
with three unpaired electrons on the π*2δ*1 orbitals in the metal–metal bonds and with large zero-fi eld splitting (ZFS) 
[3–37]. The dinuclear ruthenium carboxylates show various interesting features such as liquid crystalline properties 
[25] as well as the paramagnetic properties. We prepared many metal-assembled complexes from dinuclear species to 
one-dimensional chain compounds by application of linking ligands to dinuclear ruthenium carboxylates and found that 
most of them are antiferromagnetic between the dinuclear ruthenium units and the strength of the antiferromagnetic 
interaction depends on the linking ligands [16-29]. About ten years ago, we and Miller’s group reported that the 
dinuclear ruthenium carboxylates form polymeric mixed-metal complexes with hexacyanidometalate ion [M(CN)6]

3– 
(M = Fe, Co, and so on) and found some of them show an antiferromagnetic interaction between the dinuclear ruthenium 
units through the diamagnetic hexacyanometalate ion and a ferrimagnetic interaction among the hetero metal ions 
[30-35]. Recently, our continuing study on these systems led us to mixed-metal complexes with octacyanidometalate 
ions [M(CN)8]

4– (M = W) [36,37]. In these mixed-metal systems, a ferrimagnetic interaction between the dinuclear 
Ru2 spins and octacyanidometalate spins was observed for [{Ru2(O2CC(CH3)3)4}3(H2O)W(CN)8]n [37]. Therefore, it is 
important to develop these mixed-metal systems to fi nd interesting molecular magnetic compounds. In this study, we 
extended these systems to mixed-metal complexes with tetracyanidometalate ion by using tetracyanidonickelate(II) ion 
[Ni(CN)4]

2– in order to obtain new metal-assembled complexes of ruthenium(II,III) carboxylate. The isolated complexes 
were characterized by elemental analysis, IR, UV-vis spectra, and temperature dependence of magnetic susceptibilities 
(4.5—300 K). Here, we report on the preparation and structural characterization of these new systems.

Experimental
Synthesis: [Ru2(O2CCH3)4(H2O)2]BF4 and [Ru2{O2CC(CH3)3}4(H2O)2]BF4 were synthesized by literature 

methods [6,7]. Other reagents and solvents were purchased from commercial sources and were used without further 
purifi cation.

(PPh4)n[Ru2(O2CCH3)4Ni(CN)4]n·nH2O (1)
Tetraphenylphosphonium chloride (6.7 mg, 0.018 mmol) and potassium tetracyanidonickelate(II) (2.3 mg, 0.0088 
mmol) were dissolved in 4 mL of H2O, respectively. To an aqueous solution (2 mL) of [Ru2(O2CCH3)4(H2O)2]BF4 
(10.0 mg, 0.0178 mmol) were added these solutions, stirred for 1 min. The resulting precipitate was fi ltered, washed 
with 9 mL of water, and dried in vacuo. Yield: 5.4 mg (62%). Anal. Found: C, 45.15; H, 3.44; N, 5.87%. Calcd. for 
C36H34N4NiO9PRu2: C, 45.11; H, 3.58; N, 5.85%. IR (KBr): ν(Ar–H) 3060, 3100, ν(CN) 2130, νas(CO2

−) 1442, νs(CO2
−) 

1403. Diffuse refl ectance spectrum: λmax 338, 452, 1058, 1670 nm. 
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(PPh4)n[Ru2{O2CC(CH3)3}4]3n[Ni(CN)4]2n·2nH2O (2)
Tetraphenylphosphonium chloride (5.1 mg, 0.014 mmol) and potassium tetracyanidonickelate(II) (1.8 mg, 

0.0070 mmol) were dissolved in 5 mL of H2O, respectively. To an aqueous solution (5 mL) of [Ru2{O2CC(CH3)3}4(H2O)2]
BF4 (10.0 mg, 0.0137 mmol) were added these solutions, stirred for 1 hr. The resulting precipitate was fi ltered, washed 
with 9 mL of water, and dried in vacuo. Yield: 6.5 mg (77%). Anal. Found: C, 43.70; H, 5.29; N, 4.46%. Calcd. 
for C92H132N8Ni2O26PRu6: C, 43.83; H, 5.28; N, 4.45%. IR (KBr): ν(Ar–H) 3061, 3085, ν(CN) 2128, νas(CO2

−) 1487, 
νs(CO2

−) 1421. Diffuse refl ectance spectrum: λmax 346, 454, 1082, 1676 nm.
Measurements: Elemental analyses for carbon, hydrogen, and nitrogen were done using a Thermo-Finnigan 

FLASH EA1112 series CHNO-S analyzer. Infrared spectra were measured with a JASCO MFT-2000 FT-IR 
Spectrometer in the 4000—600 cm–1 region. Electronic spectra were measured with a Shimadzu UV-vis-NIR Recording 
Spectrophotometer (Model UV-3100). Magnetic susceptibilities were measured with a Quantum Design MPMS-XL7 
SQUID susceptometer operating at a magnetic fi eld of 0.5 T over a range of 4.5—300 K. The susceptibilities were 
corrected for the diamagnetism of the constituent atoms using Pascal’s constants. The effective magnetic moments were 
calculated from the equation μeff = 2.828√χMT, where χM is the molar magnetic susceptibility per mole of dinuclear 
ruthenium(II,III) unit. 

Results and discussion
Reaction of the mixed-valent dinuclear ruthenium(II,III) acetate and ruthenium(II,III) pivalate with 

tetracyanidonickelate(II) ion in the presence of tetraphenylphosphonium ion gave orange and brown precipitates, 
respectively. The formulation of the mixed-metal systems of dinuclear ruthenium(II,III) carboxylate with 
tetracyanidonickelate(II), (PPh4)n[Ru2(O2CCH3)4Ni(CN)4]n·nH2O (1)  and (PPh4)n[Ru2{O2CC(CH3)3}4]3n[Ni(CN)4]2n·
2nH2O (2), was confi rmed by the elemental analyses, infrared and electronic spectra, and temperature dependence of 
magnetic susceptibility data (4.5—300 K).

In the infrared spectra, two strong bands were observed at 1442 and 1403 cm−1 assignable to asymmetric and 
symmetric stretching vibrations of the syn-syn acetate bridges, respectively, for 1, whereas two strong bands observed 
at 1487 and 1421 cm−1 assignable to asymmetric and symmetric stretching vibrations of the syn-syn pivalate bridges, 
respectively, for 2 (Figure 1). The sharp bands at 2130 cm–1 in 1 and 2128 cm−1 in 2 may be attributed to ν(CN) stretching 
band of the tetracyanidonickelate(II) ion. These bands appeared at a little higher energy region compared with that of 
K2[Ni(CN)4] (ν(CN): 2125 cm–1), suggesting the bridging of the tetracyanidonickelate(II) to the dinuclear ruthenium 
carboxylate unit [38,39]. The C-H stretching vibrations of aromatic rings were observed at 3100 and 3060 cm−1 for 1 and 
at 3085 and 3061 cm−1 for 2, respectively, in agreement with the presence of the tetraphenylphosphonium ions.

Figure 1. Infrared spectra of 1 and 2.
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Figure 2. Diffused refl ectance spectra of 1 and 2.

The diffused refl ectance spectra of 1 and 2 are shown in Figure 2. The paddlewheel-type dinuclear structure 
of the mixed-valent dinuclear ruthenium(II,III) carboxylate can be considered to be maintained in these mixed-metal 
complexes, because the spectra contain the characteristic bands of dinuclear ruthenium(II,III) carboxylate. A weak broad 
absorption band around 1058 and 1670 nm in solid is typical for ruthenium(II,III) carboxylates and can be attributed to 
a δ(Ru2)→δ*(Ru2) and π∗(Ru2)→δ∗(Ru2) transitions, respectively, within ruthenium(II,III) dinuclear core [8].  A medium 
band at 452 nm may be due to π(RuO, Ru2)→π*(Ru2) transition [11,12]. The spectra contain another feature due to 
the presence of tetracyanidonickelate(II) moiety. The bands at 338 and 452 nm can be assigned to the 1A1g → 1A2g 
and 1A1g → 1B2g transitions, respectively, of the tetracyanidonickelate(II) moiety [38,39]. Similar spectral feature was 
observed for 2: 1082 (δ(Ru2)→δ*(Ru2)), 1676 (π∗(Ru2)→δ∗(Ru2)), 454 (π(RuO, Ru2)→π*(Ru2),

1A1g(Ni) → 1A2g(Ni)), 
346 (1A1g(Ni) → 1B2g(Ni)) nm.

Temperature dependence of effective magnetic moments is shown in Figure 3.
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Figure 3. Temperature dependence of the magnetic moments of 1 (●) and 2 (○).
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The magnetic moments of 1 and 2 are 3.98 and 4.07 μB, respectively, at 300 K per dinuclear ruthenium(II,III) 
unit, which are slightly higher than the spin-only value of S = 3/2 (3.87 μB). The magnetic moments gradually decrease 
with lowering of temperature until reaching 3.02 and 3.09 μB, respectively, at 4.5 K, being typical of dinuclear 
ruthenium(II,III) carboxylates [3-5]. 

The magnetic data were analyzed by a molecular fi eld approximation [40] considering the ZFS effect to estimate 
the magnitude of the antiferromagnetic interaction [9,10]. This approximation has been commonly applied for dinuclear 
ruthenium(II,III) carboxylates using the following equations: 

χ’ = χ / {1 − (2zJ / Ng2μB
2)χ}

χ = (χ// + 2χ⊥) / 3 
χ// = (Ng2μB

2 / kT)[1 + 9exp(−2D / kT)] / 4{1 + exp(−2D / kT)}
χ⊥ = (Ng2μB

2 / kT)[4 + (3kT / D){1 – exp(−2D / kT)}] / 4{1 + exp(−2D / kT)} 

where zJ is the exchange integral multiplied by the number of interacting neighbors, χ is the magnetic susceptibility of 
the individual dinuclear unit, and D is the ZFS parameter. 

The D parameter was fi xed at 75 cm−1 which is a normal value for dinuclear ruthenium(II,III) carboxylates [3]. 
The g value was treated as isotropic. Best fi tting curve was obtained with the parameters; zJ = –0.20 cm−1, g = 2.06 for 1. 
The similar parameters zJ = –0.20 cm−1, g = 2.09 were obtained for 2. These results show that a weak antiferromagnetic 
interaction is operating between the dinuclear ruthenium units, being consistent with a long separation of the dinuclear 
ruthenium units through the tetracyanidonickelate(II) bridge for the present complexes.

From the above results, we can assume a chain structure with an alternated arrangement of dinuclear ruthenium 
units and tetracyanidonickelate(II) ions shown in Figure 4 (a) for 1, whereas one- or two-dimensional array of dinuclear 
ruthenium units and tetracyanidonickelate(II) ions such as Figures 4 (b) and 4 (c) for 2. There are two types of CN 
groups for the tetracyanidonickelate(II) moieties: bridging and non-coordinating. We can see the overlapping of these 
CN stretching bands in the infrared spectra as shown in Figure 5.

Figure 4. Proposed structures (a) for 1 and (b) and (c) for 2, respectively. 
The Ru2 unit denotes the dinuclear ruthenium carboxylate.
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Figure 5. Infrared spectra of K2[Ni(CN)4] and the present complexes in the CN stretching band region.

Conclusions
By using tetracyanidonickelate(II), the preparation of the mixed-metal chain complexes 

of dinuclear ruthenium(II,III) carboxylate, (PPh4)n[Ru2(O2CCH3)4Ni(CN)4]n·nH2O (1)  and 
(PPh4)n[Ru2{O2CC(CH3)3}4]3n[Ni(CN)4]2n·2nH2O (2), was achieved successfully. The analytical data, infrared spectra, 
UV-vis-NIR spectra, and temperature dependence of magnetic susceptibilities are consistent with one- or two-dimensional 
chain structures with an alternated arrangement of dinuclear ruthenium units and tetracyanidonickelate(II) ions. In 
accordance with the structural feature, a weak antiferromagnetic interaction through the tetracyanidonickelate(II) ion 
was observed for the present complexes.
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